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This paper studies the symmetry group of two special types of carbon nanotori.

The construction is motivated by a group-theoretical result.

1. Introduction

Carbon nanotubes are arrangements of carbon atoms that

have the shape of a cylinder (Reich et al., 2004; Iijima, 1992).

They have been intensively studied because of their special

thermal, mechanical and electrical properties. From a mathe-

matical point of view, the simplest invariant of a nanotube is

the group of symmetries of the network formed by the carbon

atoms (Damnjanovic & Milosevic, 2010).

Carbon nanotori are of course just arrangements of carbon

atoms on a torus (Dienes & Thomas, 2011; Liu et al., 2002).

Their group of symmetry was studied in Arezoomand & Taeri

(2009) and Yavari & Ashrafi (2009). However, in these papers

it was assumed that the meridian of the torus was much

smaller than the longitude of the torus.

In this paper we are interested in the group of symmetry of

a carbon nanotorus whose meridian and longitude are of

comparable size. The examples that we study can be asso-

ciated in a natural way with a group. More precisely, we

consider the Cayley hypergraph associated with a group Tn

and show that it can be placed on a torus. Using the notation

from Dienes & Thomas (2011), this nanotorus turns out to be

the one associated with the pair of vectors L1 ¼ na1 and

L2 ¼ na1 � na2.

We also study the Cayley hypergraph associated with the

group SLð2; 3Þ and show that it corresponds to the pair of

vectors L1 ¼ 3a1 � a2 and L2 ¼ a1 � 3a2. The interesting part

about this second example is that some of the symmetries of

the carbon nanotorus are not induced by symmetries of the

graphene sheet.

2. Cayley hypergraph

2.1. The group Tn

Denote by Cn the cyclic group with n elements. It is

convenient to see Cn as a subgroup of the complex field C

generated by �n. We denote by " the generator of C3.

Definition 2.1. Define the group Tn by

Tn ¼ ha; b ja3
¼ 1; b3

¼ 1; ðabÞ
3
¼ 1; ðab2

Þ
n
¼ 1i:

First let us notice that Tn is a finite group.

Lemma 2.2. jTnj � 3n2.

Proof. Condition ðabÞ
3
¼ 1 can be rewritten as

aba ¼ b2a2b2; since a3 ¼ b3 ¼ 1 this is equivalent to

ðab2Þðb2aÞ ¼ ðb2aÞðab2Þ. We have ordðab2Þ ¼ ordðb2aÞ ¼ n.

There exists a morphism � : Tn ! C3 such that a! " and

b! ". Obviously we have Tn ffi kerð�Þ �C3. If x 2 kerð�Þ
then x can be written as a word of length 3k in a and b.

Moreover, we can notice that any word of length 3 can be

expressed in terms of ab2 and b2a. This means that kerð�Þ is

generated by ab2 and b2a and so it has at most n2 elements. In

particular jTnj � 3n2.
&

For all n � 2 we define an automorphism

u : Cn � Cn ! Cn � Cn by

uðz1; z2Þ ¼ ðz
�1
1 z�1

2 ; z�1
1 Þ:

One can easily check that u is an automorphism of Cn � Cn

and that u3 ¼ id. This allows us to define a homomorphism

’ : C3 ! AutðCn � CnÞ, by

’ð"Þ ¼ u:

So we can construct the semidirect product of Cn � Cn by C3

with respect to ’. Now we have the following result.

Proposition 2.1. Tn ffi ðCn � CnÞ �’ C3 where ’ is the

above-defined morphism. In particular jTnj ¼ 3n2.

Proof. Consider the elements A ¼ ðð1; �nÞ; "Þ and

B ¼ ðð1; 1Þ; "Þ 2 ðCn � CnÞ �’ C3. One can check that A3 ¼ 1,

B3 ¼ 1, ðABÞ
3
¼ 1 and ðAB2Þ

n
¼ 1. Consequently we have a

homomorphism � : Tn ! ðCn � CnÞ �’ C3 determined by

�ðaÞ ¼ A and �ðbÞ ¼ B. Since A and B generate

ðCn � CnÞ �’ C3 we have that this morphism is surjective.

Finally, because jTnj � 3n2, we must have that � is an

isomorphism. &
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2.2. Cayley hypergraph of a group generated by elements of
order 3

Hypergraphs are generalizations of the notion of graphs.

The main difference is that an edge can connect more than two

vertices. Formally, a hypergraph consists of a set of vertices V

and a set of hyper-edges E (that is, a collection of subsets in

V). A k-hypergraph is a hypergraph with the property that any

edge connects exactly k vertices. When k ¼ 2 we recover the

usual notion of a graph. In this paper we are interested only in

the case k ¼ 3.

We will assume that each hyper-edge has a cyclic ordering of

the vertices (i.e. a hyper-edge is a cyclically ordered subset of

V). For example if v0, v1 and v2 2 V then fv0; v1; v2g is the

same hyper-edge as fv1; v2; v0g but is different to fv0; v2; v1g.

It is well known that with a group G and a set of generators

S one can associate the so-called Cayley graph CayðG; SÞ. A

special situation is when all the elements of the set S have

order 2. In that case the CayðG; SÞ has the structure of a pre-

reflection system (Davis, 2007).

The Cayley graph was generalized to k-hypergraphs by

Buratti (1994). When k ¼ 2 we recover the classical Cayley

graph. In this paper we study groups that are generated by

elements of order 3 (they correspond to 3-hypergraphs). We

briefly recall from Buratti (1994) the construction of the

hypergraph Cay3ðG;TÞ.

Let G be a group and T a set of generators for G such that

every element in T has order 3. Moreover, assume that if

� 2 T then ��1 ¼ �2 is not in T. To construct the 3-hyper-

graph Cay3ðG;TÞ take the set of vertices to be G. A cyclically

ordered subset fg1; g2; g3g � G is a hyper-edge if there exists

� 2 T such that g2 ¼ g1� and g3 ¼ g1�
2. Notice that g3 ¼ g2�,

g1 ¼ g2�
2 and g1 ¼ g3� g2 ¼ g3�

2 and so each edge has a

natural cyclic orientation (we can talk about the ‘previous’

vertex and the ‘next’ vertex of an edge).

Just like in the case of the usual Cayley graph, we have an

action of the group G on Cay3ðG;TÞ. The action of G on

vertices G� V ! V, where V ¼ G, is given by left multi-

plication: ðg; xÞ 7! gx. This is compatible with the hyper-edges

in Cay3ðG;TÞ and the orientation of hyper-edges.

3. Main result

3.1. First example

Take G ¼ T2ð¼ A4Þ, the alternating group on four letters

and T ¼ fa; bg. In Fig. 1 we draw the hypergraph Cay3ðG;TÞ.

The hypergraph lives in a natural way on a torus, but it is more

convenient to draw it in the plane. Of course this will force us

to draw some hyper-edges (or part of them) more than once.

Let us explain the picture. The vertices of our hypergraph are

the small rectangles with a label inside them. A hyper-edge is a

Y-shape connector among three vertices. The orientation is

induced from the orientation of the plane. Start at the vertex

labeled e (in the upper part of the picture); at the first step we

get two hyper-edges ðe; a; a2Þ and ðe; b; b2Þ. We continue this

procedure with the new vertices, for example the vertex a is

part of two hyper-edges ða; a2; eÞ [which is the same as

ðe; a; a2Þ] and the hyper-edge ða; ab; ab2Þ. Let us see how we

get the hexagon in the top-left part of the picture. Our

procedure indicates that the vertex labeled by bab should also

get the label a2b2a2, but these two are equal as elements in T2.

After a few steps, we get the picture in Fig. 1. One can notice

that we have several repetitions in our picture. These must be

identified as part of the hypergraph Cay3ðG;TÞ. It means that

the three segments on the left labeled with bab, ba and ba2 are

the same as the segments on the right labeled with aba, b2a2b

and ab2. Similarly, after making a small twist, the bottom part

of the picture can be identified with the top part. In particular,

this tells us how to put this hypergraph on a torus.

Example 3.1. The hypergraph Cay3ðT2; fa; bgÞ is described

in Fig. 1. A similar picture is obtained for the hypergraph

Cay3ðG;TÞ when G ¼ Tn and T ¼ fa; bg. In that case we get a

tiling of the torus with n2 hexagons. The corresponding two

vectors are OV1 ¼ na1 and OV2 ¼ na1 � na2.

Remark 3.2. If one thinks about these hypergraphs as

models for nanotori, then the carbon atoms correspond to the

joint point of hyper-edges and not to the vertices of the

hypergraph.

Next we want to make the identification between the

hypergraph and the usual graphene sheet. We consider a tiling

with hexagons of the complex plane C such that a1 ¼ 1 and

a2 ¼ expði5�=3Þ (see Fig. 2). Define �, � : C! C by

�ðzÞ ¼ expði2�=3Þz;

�ðzÞ ¼ expði2�=3Þzþ 1:

One can see that � is the rotation with 2�=3 around O and � is

the rotation with 2�=3 around the point B (see Fig. 2). For the

second statement, notice that B ¼ ð1=31=2Þ expði�=6Þ and the

rotation with angle 2�=3 around B is obtained by first shifting

with the vector BO, then making a rotation with angle 2�=3,
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Figure 1
Cay3ðT2; fa; bgÞ.



and finally making a shift back with the vector OB. But this

corresponds to the function

z! expði2�=3Þ½z� ð1=31=2
Þ expði�=6Þ	 þ ð1=31=2

Þ expði�=6Þ

¼ expði2�=3Þzþ ð1=31=2Þ½expði�=6Þ � expði5�=6Þ	

¼ expði2�=3Þzþ 1:

Also ��2 is the translation with minus one unit in the direction

of the vector a1 ¼ 1 and �� is a rotation of order 3. In parti-

cular we get �3 ¼ id, �3 ¼ id and ð��Þ3 ¼ id. Moreover � and

� preserve the tiling with hexagons of C.

To make the identification between Figs. 1 and 2, it is

enough to say that the points O and B correspond to the

junction points of the hyper-edge ðe; a; a2Þ and, respectively,

ðe; b; b2Þ. We also draw a (shaded) fundamental domain in

Fig. 2 and a part of the corresponding fundamental domain

in Fig. 1.

In order to describe the arrangement of carbon atoms for a

nanotorus, one must know the two vectors that give the

identification in the graphene sheet. These two vectors are

denoted by V1 ¼ ma1 þ na2 and V2 ¼ pa1 þ qa2. Without loss

of generality we can assume that the angle � between V1 and

a1 is in the interval ð��=3; �=3	 and the angle � between V1

and V2 is in the interval ð0; �=2Þ. This will force the quantity

Nhex ¼ np�mq to be positive.

With the above convention the tiling of the torus described

in Fig. 1 (and Fig. 2) corresponds to the vectors:

OV1 ¼ 2a1;

OV2 ¼ 2a1 � 2a2:

Since the group T2 acts on Cay3ðT2; fa; bgÞ, this gives an action

of the T2 on the carbon nanotorus corresponding to OV1 and

OV2. Let � be the lattice determined by the vectors OV1 and

OV2. One can notice that the action of a (respectively, b) on

the torus T2 ¼ C=� is induced by the action of � (respectively,

�) on C.

More generally one can show that the 3-hypergraph asso-

ciated with the group Tn gives a tiling of the torus that

corresponds to vectors OV1 ¼ na1 and OV2 ¼ na1 � na2.

Notice that a and b preserve the orientation of the torus. If

we do not need to preserve the orientation of the torus, then

we also have the symmetry that corresponds to the reflection

in the line determined by the vector a1 � a2 (i.e. the line

determined by O and B). This generates a subgroup of the

group of symmetries which is isomorphic to the semidirect

product of �3, the symmetric group on three letters, with

Cn � Cn. This group is usually denoted by Gðn; n; 3Þ (Shep-

hard & Todd, 1954; Lehrer & Taylor, 2009). To get all the

symmetries that can be extended to symmetries of the torus,

one has to consider also the symmetry with respect to the

mediator line of the segment OB.

3.2. Second example

Consider the group G ¼ SLð2; 3Þ. Using the program GAP

(http://www.gap-system.org), one can see that G has a

presentation with generators and relations as

G ¼ hx; y jx3
¼ 1; y3

¼ 1; xyx ¼ yxyi:

We will show that the Cayley hypergraph of G can be placed

on the torus T2; however the orientation of hyper-edges is not

going to be induced by the orientation on T2.

In Fig. 3 we have the hypergraph associated with the above

presentation. Notice that the edge ðe; y; y2Þ has the same

orientation as the orientation of the plane (and we label it with

an anticlockwise arrow symbol), while the edge ðe; x; x2Þ has

the opposite orientation (and we label it with a clockwise

arrow symbol). A similar convention was used for all the other

hyper-edges of Cay3ðSLð2; 3Þ; fx; ygÞ. In total, we have eight

hyper-edges that have the same orientation as T2 and eight

that have the opposite orientation. Just like in the previous

example some of the vertices and edges appear more than

once in the picture, but after they are identified we get a tiling

of the torus.

Example 3.3. Cay3ðSLð2; 3Þ; fx; ygÞ gives a tiling of the torus

with eight hexagons. The corresponding two vectors are

OV1 ¼ 3a1 � a2 and OV2 ¼ a1 � 3a2 (see Fig. 4).

The orientation of hyper-edges is not induced by the

orientation of T2, so it is reasonable to expect that some of the

symmetries of the hypergraph Cay3ðSLð2; 3Þ; fx; ygÞ do not

come from symmetries of the plane. In Fig. 5 we illustrate that
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Figure 2
OV1 ¼ 2a1, OV2 ¼ 2a1 � 2a2.

Figure 3
Cay3ðSLð2; 3Þ; fx; ygÞ.



this is indeed the case. More precisely, we present the action of

x on Cay3ðSLð2; 3Þ; fx; ygÞ. To make the action easier to

visualize we divide the elements of G in three orbits ai, bi and

ci where 1 � i � 8. The action of x is determined by xai ¼ bi,

xbi ¼ ci and xci ¼ ai.

Remark 3.4. The hyper-edges are preserved but they are

twisted by the action of x (just like in a Transformers toy).

However, the hexagonal faces of the tiling are not preserved

by the action of G. For example, the hexagon with vertices a1,

a2, a4, b4, b2, b1 is transformed in the loop b1, b2, b4, c4, c2, c1

that is homotopical nontrivial as a loop on the torus.

4. Isospectral equivalence

The models that we described in the previous section have the

property that the meridian and the longitude are equal (the Tn

case) or of comparable size [the SLð2; 3Þ case]. This creates a

problem when we want to get physical nanotori with that

prescribed crystallographic structure (since the bond among

carbon atoms is curled).

In Dienes & Thomas (2011), a certain equivalence relation

among physically distinct tori is discussed. The equivalence

relation is generated by modular symmetries which can change

the physical structure of the torus but preserve the band

structure, energy spectra, electrical conductivity and number

of hexagons. In each equivalence class there exists an element

with minimal twist on the bond. This is of course the most

likely to exist in a physical shape.

In what follows we will recall the equivalence relation from

Dienes & Thomas (2011), and show that the vectors OV1 and

OV2 presented above give that minimal twist.

The arrangement of the carbon atoms of a nanotorus is

determined by two vectors V1 ¼ ma1 þ na2 and V2 ¼

pa1 þ qa2. We associate with the above pair of vectors an

element u ¼ ðmþ in; pþ iqÞ 2 Z½i	2. Two elements in Z½i	2

are equivalent if they are related by compositions of the

following maps: Sðmþ in; pþ iqÞ ¼ ð�ðpþ iqÞ;mþ inÞ and

Tðmþ in; pþ iqÞ ¼ ðmþ in;mþ pþ iðnþ qÞÞ. Notice that S

and T correspond to the multiplication with

S ¼
0 �1

1 0

� �
2 SL2ðZÞ

and

T ¼
1 0

1 1

� �
2 SL2ðZÞ;

respectively. Also S and T do not change Nhex ¼ np�mq (the

number of hexagons on the torus), but they change the angles

� and �. Also the group of symmetry is not changed, but the

embedding in R3 is different (Dienes & Thomas, 2011). Of

course one prefers the embedding that gives the minimal twist

(minimal tension on the bond among carbon atoms).

With the element ðmþ in; pþ iqÞ one can associate the

complex number

� ¼
p2 þ pqþ q2

m2 þmnþ n2
expði�Þ:

We want � to be in the fundamental domain (Dienes &

Thomas, 2011),

F ¼ f�j
�1

2
<Reð�Þ �

1

2
; Imð�Þ> 0; j�j � 1g:

In Example 3.1 we have OV1 ¼ na1 and OV2 ¼ na1 � na2 and

so

� ¼
n2 � n2 þ n2

n2
exp½ið�=3Þ	 ¼

1

2
þ i

31=2

2
2 F :

In Example 3.3 we have OV1 ¼ 3a1 � a2 and OV2 ¼ a1 � 3a2

and so

� ¼
1� 3þ 9

9� 3þ 1
expði�Þ ¼

1

7
þ i

4ð31=2Þ

7
2 F :

Here we are using the fact that in Fig. 4 we have OX ¼ 2,

XV1 ¼ 31=2 and so OV1 ¼ 71=2. From the triangle OV1V2 we

have

cosð�Þ ¼
V1V2

2 �OV2
1 �OV2

2

�2OV1OV2

¼
12� 7� 7

�2ð71=2Þð71=2Þ
¼

2

14
¼

1

7
:

Notice that the rhombus OV1DV2 has the property that,

relative to the distance induced by the hypergraph, the two

diagonals are of equal length 8, i.e. the shortest path between
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Figure 5
Action of x on Cay3ðSLð2; 3Þ; fx; ygÞ.

Figure 4
OV1 ¼ 3a1 � a2, OV2 ¼ a1 � 3a2.



O and D (along the edges of the tiling with hexagons) has the

same length as the shortest path between V1 and V2. This

partially explains why we have more symmetry than one

normally expects.

5. Some remarks

5.1. Map automorphisms

After this paper was written, it was pointed out to us by the

referee that there might be some connections with the article

by Senechal (1988). We will recall and discuss the results from

Senechal (1988).

Let � be the standard hexagonal tiling in the Euclidean

plane E2. Let F be a discrete subgroup of E2 that acts freely on

E2 such that for each element f 2 F we have f� � �. Suppose

that E2=F is a torus and the graph 	 ¼ �=F gives a tiling with

hexagons for this torus. We say that an automorphism

� : 	 ! 	 is a map automorphism if � can be extended to an

automorphism of the torus E2=F. It was proved in Senechal

(1988) that the group of map automorphisms of the graph

	 is isomorphic with NAutð�ÞðFÞ=F [where NAutð�ÞðFÞ is the

normalizer of the group F in Autð�Þ].
The group of automorphisms of � is generated by the

translations u1ðzÞ ¼ zþ 1, u2ðzÞ ¼ z� ", together with the

symmetries sðzÞ ¼ �"z (with respect to the vector a1 þ a2),

and tðzÞ ¼ z� ði=31=2Þ (with respect to the mediator line of the

segment OC), see Fig. 2. One can see that the group generated

by u1 and u2 is isomorphic with Z� Z. The subgroup gener-

ated by s and t is isomorphic with D12. Moreover, Autð�Þ is

isomorphic with the semidirect product of Z� Z and D12,

where the action of the group D12 on Z� Z is given by

sðu1; u2Þ ¼ ðu2; u1Þ;

tðu1; u2Þ ¼ ðu1; u1 � u2Þ:

Notice that in general F does not have to be a normal

subgroup of Autð�Þ. With the above notations, the nanotorus

from Example 3.1 is obtained when F is generated by nu1 and

nu2. This group is a normal subgroup of Autð�Þ and so the

group of map automorphism of 	 is

ðZ� ZÞ �D12=ðnZ� nZÞ ffi ðZn � ZnÞ �D12:

Regarding Example 3.3, one can notice that x gives an auto-

morphism of the graph of the nanotorus that does not extend

to an automorphism of the torus surface (see Remark 3.4).

And so, that example is not covered by the results in Senechal

(1988). Also notice that neither of these two examples are

covered by the results in Damnjanovic & Milosevic (2010),

since the automorphisms of the nanotorus that we described

cannot be lifted to automorphisms of an appropriate nano-

tube.

The fact that the two nanotori we constructed are naturally

associated with groups makes them intriguing. The above

remarks confirm that they are of a special type.

5.2. Final remarks

As we noticed above, the meridian and longitude curves of

the torus have the same length relative to the distance func-

tion on the hypergraph. This means that these models do not

fit in the examples discussed in Arezoomand & Taeri (2009)

and Yavari & Ashrafi (2009). If there exists a nanotorus with

the above structure, then the bond between the atoms must be

curled. This suggests that such nanostructures would need to

have a very strong bonding.

Even if the high symmetry of these models makes them

interesting to study, they are rather exotic cases which might

not have a physical realization. However, we hope that the

approach from this paper can be used to study the group of

symmetry of other families of carbon nanotori (for example

finite covers of the models described here). We intend to

approach this problem in a follow-up paper.
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